MySQL中常见的八种SQL错误用法示例

2022-10-16,,,,

前言

mysql在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在mysql数据库之上,甚至是从oracle迁移到mysql上来。但也存在部分客户在使用mysql数据库的过程中遇到一些比如响应时间慢,cpu打满等情况。

阿里云rds专家服务团队帮助云上客户解决过很多紧急问题。现将《apsaradb专家诊断报告》中出现的部分常见sql问题总结如下,供大家参考。

1、limit 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。

比如对于下面简单的语句,一般 dba 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

select * 
from operation 
where type = 'sqlstats' 
  and name = 'slowlog' 
order by create_time 
limit 1000, 10;

好吧,可能90%以上的 dba 解决该问题就到此为止。

但当 limit 子句变成 “limit 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。sql 重新设计如下:

select * 
from  operation 
where type = 'sqlstats' 
and  name = 'slowlog' 
and  create_time > '2017-03-16 14:00:00' 
order by create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

sql语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended select * 
  > from my_balance b 
  > where b.bpn = 14000000123 
  >  and b.isverified is null ;
mysql> show warnings;
| warning | 1739 | cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),mysql 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除

虽然 mysql5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 join。

比如下面 update 语句,mysql 实际执行的是循环/嵌套子查询(dependent subquery),其执行时间可想而知。

update operation o 
set status = 'applying' 
where o.id in (select id 
    from (select o.id, 
        o.status 
      from operation o 
      where o.group = 123 
        and o.status not in ( 'done' ) 
      order by o.parent, 
         o.id 
      limit 1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type  | table | type | possible_keys | key  | key_len | ref | rows | extra            |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | primary   | o  | index |    | primary | 8  |  | 24 | using where; using temporary      |
| 2 | dependent subquery |  |  |    |   |   |  |  | impossible where noticed after reading const tables |
| 3 | derived   | o  | ref | idx_2,idx_5 | idx_5 | 8  | const | 1 | using where; using filesort       |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 join 之后,子查询的选择模式从 dependent subquery 变成 derived,执行速度大大加快,从7秒降低到2毫秒。

update operation o 
  join (select o.id, 
       o.status 
      from operation o 
      where o.group = 123 
       and o.status not in ( 'done' ) 
      order by o.parent, 
        o.id 
      limit 1) t
   on o.id = t.id 
set status = 'applying' 

执行计划简化为

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra            |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1 | primary  |  |  |    |  |   |  |  | impossible where noticed after reading const tables |
| 2 | derived  | o  | ref | idx_2,idx_5 | idx_5 | 8  | const | 1 | using where; using filesort       |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序

mysql 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

select * 
from my_order o 
  inner join my_appraise a on a.orderid = o.id 
order by a.is_reply asc, 
   a.appraise_time desc 
limit 0, 20 

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys  | key  | key_len | ref  | rows | extra 
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | simple  | a  | all | idx_orderid | null | null | null | 1967647 | using filesort |
| 1 | simple  | o  | eq_ref | primary  | primary | 122  | a.orderid |  1 | null   |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

select * 
from ((select *
   from my_order o 
    inner join my_appraise a 
      on a.orderid = o.id 
       and is_reply = 0 
   order by appraise_time desc 
   limit 0, 20) 
  union all 
  (select *
   from my_order o 
    inner join my_appraise a 
      on a.orderid = o.id 
       and is_reply = 1 
   order by appraise_time desc 
   limit 0, 20)) t 
order by is_reply asc, 
   appraisetime desc 
limit 20;

5、exists语句

mysql 对待 exists 子句时,仍然采用嵌套子查询的执行方式。如下面的 sql 语句:

select *
from my_neighbor n 
  left join my_neighbor_apply sra 
    on n.id = sra.neighbor_id 
     and sra.user_id = 'xxx' 
where n.topic_status < 4 
  and exists(select 1 
     from message_info m 
     where n.id = m.neighbor_id 
       and m.inuser = 'xxx') 
  and n.topic_type <> 5 

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type  | table | type | possible_keys  | key | key_len | ref | rows | extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
| 1 | primary   | n  | all | | null  | null | null | 1086041 | using where     |
| 1 | primary   | sra | ref | | idx_user_id | 123  | const |  1 | using where   |
| 2 | dependent subquery | m  | ref | | idx_message_info | 122  | const |  1 | using index condition; using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

select *
from my_neighbor n 
  inner join message_info m 
    on n.id = m.neighbor_id 
     and m.inuser = 'xxx' 
  left join my_neighbor_apply sra 
    on n.id = sra.neighbor_id 
     and sra.user_id = 'xxx' 
where n.topic_status < 4 
  and n.topic_type <> 5 

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys  | key  | key_len | ref | rows | extra     |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| 1 | simple  | m  | ref | | idx_message_info | 122  | const | 1 | using index condition |
| 1 | simple  | n  | eq_ref | | primary | 122  | ighbor_id | 1 | using where  |
| 1 | simple  | sra | ref | | idx_user_id | 123  | const  | 1 | using where   |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 聚合子查询;
  • 含有 limit 的子查询;
  • union 或 union all 子查询;
  • 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

select * 
from (select target, 
    count(*) 
  from operation 
  group by target) t 
where target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table  | type | possible_keys | key   | key_len | ref | rows | extra  |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
|
1
| primary  |
 <derived2> 
| ref |
 <auto_key
0
> 
| <auto_key0> |
514
| const |
2
| using where |
| 2 | derived  | operation | index | idx_4   | idx_4  | 519  | null | 20 | using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

select target, 
  count(*) 
from operation 
where target = 'rm-xxxx' 
group by target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | simple | operation | ref | idx_4 | idx_4 | 514 | const | 1 | using where; using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 mysql 外部条件不能下推的详细解释说明请参考文章:http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围

先上初始 sql 语句:

select * 
from  my_order o 
    left join my_userinfo u 
       on o.uid = u.uid
    left join my_productinfo p 
       on o.pid = p.pid 
where ( o.display = 0 ) 
    and ( o.ostaus = 1 ) 
order by o.selltime desc 
limit 0, 15 

该sql语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type  | possible_keys | key   | key_len | ref       | rows  | extra                       |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | simple   | o   | all  | null     | null  | null  | null      | 909119 | using where; using temporary; using filesort    |
| 1 | simple   | u   | eq_ref | primary    | primary | 4    | o.uid |   1 | null                        |
| 1 | simple   | p   | all  | primary    | null  | null  | null      |   6 | using where; using join buffer (block nested loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 where 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。sql 重写后如下,执行时间缩小为1毫秒左右。

select * 
from (
select * 
from  my_order o 
where ( o.display = 0 ) 
    and ( o.ostaus = 1 ) 
order by o.selltime desc 
limit 0, 15
) o 
   left join my_userinfo u 
       on o.uid = u.uid 
   left join my_productinfo p 
       on o.pid = p.pid 
order by o.selltime desc
limit 0, 15

再检查执行计划:子查询物化后(select_type=derived)参与 join。虽然估算行扫描仍然为90万,但是利用了索引以及 limit 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table   | type  | possible_keys | key   | key_len | ref  | rows  | extra                       |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | primary   | <derived2> | all  | null     | null  | null  | null |   15 | using temporary; using filesort          |
| 1 | primary   | u     | eq_ref | primary    | primary | 4    | o.uid |   1 | null                        |
| 1 | primary   | p     | all  | primary    | null  | null  | null |   6 | using where; using join buffer (block nested loop) |
| 2 | derived   | o     | index | null     | idx_1  | 5    | null | 909112 | using where                    |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

select  a.*, 
     c.allocated 
from   ( 
       select  resourceid 
       from   my_distribute d 
          where  isdelete = 0 
          and   cusmanagercode = '1234567' 
          order by salecode limit 20) a 
left join 
     ( 
       select  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
       from   my_resources 
          group by resourcesid) c 
on    a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

select  a.*, 
     c.allocated 
from   ( 
          select  resourceid 
          from   my_distribute d 
          where  isdelete = 0 
          and   cusmanagercode = '1234567' 
          order by salecode limit 20) a 
left join 
     ( 
          select  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
          from   my_resources r, 
              ( 
                   select  resourceid 
                   from   my_distribute d 
                   where  isdelete = 0 
                   and   cusmanagercode = '1234567' 
                   order by salecode limit 20) a 
          where  r.resourcesid = a.resourcesid 
          group by resourcesid) c 
on    a.resourceid = c.resourcesid

但是子查询 a 在我们的sql语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 with 语句再次重写:

with a as 
( 
     select  resourceid 
     from   my_distribute d 
     where  isdelete = 0 
     and   cusmanagercode = '1234567' 
     order by salecode limit 20)
select  a.*, 
     c.allocated 
from   a 
left join 
     ( 
          select  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
          from   my_resources r, 
              a 
          where  r.resourcesid = a.resourcesid 
          group by resourcesid) c 
on    a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划,决定着sql的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的sql语句。

程序员在设计数据模型以及编写sql语句时,要把算法的思想或意识带进来。

编写复杂sql语句要养成使用 with 语句的习惯。简洁且思路清晰的sql语句也能减小数据库的负担 。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

《MySQL中常见的八种SQL错误用法示例.doc》

下载本文的Word格式文档,以方便收藏与打印。