理解ReentrantLock的公平锁和非公平锁

2022-11-18,,

学习AQS的时候,了解到AQS依赖于内部的FIFO同步队列来完成同步状态的管理,当前线程获取同步状态失败时,同步器会将当前线程以及等待状态等信息构造成一个Node对象并将其加入到同步队列,同时会阻塞当前线程,当同步状态释放时,会把首节点中的线程唤醒,使其再次尝试获取同步状态。

这时,我有了一个疑问,AQS的同步队列是FIFO的,就是先来排队的先走。那怎么实现非公平锁呢?查阅了一些资料,总算知道了。

首先从公平锁开始看起。

ReentrantLock 的公平锁

ReentrantLock 默认采用非公平锁,除非在构造方法中传入参数 true 。

//默认
public ReentrantLock() {
sync = new NonfairSync();
}
//传入true or false
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}

公平锁的 lock 方法:

static final class FairSync extends Sync {
final void lock() {
acquire(1);
}
// AbstractQueuedSynchronizer.acquire(int arg)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 1. 和非公平锁相比,这里多了一个判断:是否有线程在等待
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}

我们可以看到,在注释1的位置,有个!hasQueuedPredecessors()条件,意思是说当前同步队列没有前驱节点(也就是没有线程在等待)时才会去compareAndSetState(0, acquires)使用CAS修改同步状态变量。所以就实现了公平锁,根据线程发出请求的顺序获取锁。

非公平锁的lock方法

static final class NonfairSync extends Sync {
final void lock() {
// 2. 和公平锁相比,这里会直接先进行一次CAS,成功就返回了
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
// AbstractQueuedSynchronizer.acquire(int arg)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//3.这里也是直接CAS,没有判断前面是否还有节点。
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

非公平锁的实现在刚进入lock方法时会直接使用一次CAS去尝试获取锁,不成功才会到acquire方法中,如注释2。而在nonfairTryAcquire方法中并没有判断是否有前驱节点在等待,直接CAS尝试获取锁,如注释3。由此实现了非公平锁。

总结

非公平锁和公平锁的两处不同:

    非公平锁在调用 lock 后,首先就会调用 CAS 进行一次抢锁,如果这个时候恰巧锁没有被占用,那么直接就获取到锁返回了。

    非公平锁在 CAS 失败后,和公平锁一样都会进入到 tryAcquire 方法,在 tryAcquire 方法中,如果发现锁这个时候被释放了(state == 0),非公平锁会直接 CAS 抢锁,但是公平锁会判断等待队列是否有线程处于等待状态,如果有则不去抢锁,乖乖排到后面。

公平锁和非公平锁就这两点区别,如果这两次 CAS 都不成功,那么后面非公平锁和公平锁是一样的,都要进入到阻塞队列等待唤醒。

相对来说,非公平锁会有更好的性能,因为它的吞吐量比较大。当然,非公平锁让获取锁的时间变得更加不确定,可能会导致在阻塞队列中的线程长期处于饥饿状态。

作者:小北觅
链接:https://www.jianshu.com/p/2ada27eee90b
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

理解ReentrantLock的公平锁和非公平锁的相关教程结束。

《理解ReentrantLock的公平锁和非公平锁.doc》

下载本文的Word格式文档,以方便收藏与打印。