德摩根定律的证明 De Morgan's law

2023-02-18,,

De Morgan's Laws

Lemma 1: \((\bigcup_n S_n)^c=\bigcap_n S_n^c\)

Proof for Lemma 1:

\[\because \forall x \in (\bigcup_n S_n)^c, x \notin \bigcup_n S_n, \therefore x \notin S_i, \forall i \in \{1,2,\dots,n\}. \therefore x \in S_i^c, \forall i \in \{1,2,\dots,n\}, x \in \bigcap_n S_n^c.\\ \therefore (\bigcup_n S_n)^c \subset \bigcap_n S_n^c .
\]
\[\because \forall x \in \bigcap_n S_n^c, x \in S_i^c, \forall i \in \{1,2,\dots n\}, x \notin S_i, \forall \{1,2,\dots,n\}, \therefore x \notin \bigcup_n S_n, \therefore x \in (\bigcup_n S_n)^c. \\ \therefore \bigcap_n S_n^c \subset (\bigcup_n S_n)^c.
\]
\[\therefore (\bigcup_n S_n)^c=\bigcap_n S_n^c.
\]

Lemma 2: \((\bigcap_n S_n)^c=\bigcup_n S_n^c\)

Proof for Lemma 2 :

\[\because \forall x \in (\bigcap_n S_n)^c, x \notin \bigcap_n S_n, \therefore \exists i \in \{1,2,\dots,n\}, x \in S_i^c, x \in \bigcup_n S_n^c. \therefore (\bigcap_n S_n)^c \subset \bigcup_n S_n^c .
\]
\[\because \forall x \in \bigcup_n S_n^c, \therefore \exists i \in\{1,2,\dots,n\}, x \notin S_i, x \notin \bigcap_n S_n, \therefore x \in (\bigcap_n S_n)^c.\therefore \bigcup_n S_n^c \subset (\bigcap_n S_n)^c.
\]
\[\therefore (\bigcap_n S_n)^c=\bigcup_n S_n^c.
\]

Summary:

The complement of the union of the sets equals the intersection of the sets' complement.
The complement of the intersection of the sets equals the union of the sets' complement.

德摩根定律证明 De Morgan's law的相关教程结束。

《德摩根定律的证明 De Morgan's law.doc》

下载本文的Word格式文档,以方便收藏与打印。