Ceres 自动求导解析-从原理到实践

2023-06-13,,

Ceres 自动求导解析-从原理到实践

目录
Ceres 自动求导解析-从原理到实践
1.0 前言
2.0 Ceres求导简介
3.0 Ceres 自动求导原理
3.1 官方解释
3.2 自我理解
4.0 实践
4.1 Jet 的实现
4.2 多项式函数自动求导
4.3 BA 问题中的自动求导
Reference

1.0 前言

Ceres 有一个自动求导功能,只要你按照Ceres要求的格式写好目标函数,Ceres会自动帮你计算精确的导数(或者雅克比矩阵),这极大节约了算法开发者的时间,但是笔者在使用的时候一直觉得这是个黑盒子,特别是之前在做深度学习的时候,神经网络本事是一个很盒模型了,再加上 pytorch 的自动求导,简直是黑上加黑。现在转入视觉SLAM方向,又碰到了 Ceres 的自动求导,是时候揭开其真实的面纱了。知其然并知其所以然才是一名算法工程师应有的基本素养。

2.0 Ceres求导简介

Ceres 一共有三种求导的方式提供给开发者,分别是:

解析求导,也就是手动计算出导数的解析形式。

例如有如下函数;

\[y = \frac{b_1}{(1+e^{b_2-b_3x})^{1/b_4}}
\]

构建误差函数:

\[\begin{split}\begin{align}
E(b_1, b_2, b_3, b_4)
&= \sum_i f^2(b_1, b_2, b_3, b_4 ; x_i, y_i)\\
&= \sum_i \left(\frac{b_1}{(1+e^{b_2-b_3x_i})^{1/b_4}} - y_i\right)^2\\
\end{align}\end{split}
\]

对待优化变量的导数为:

\[\begin{split}\begin{align}
D_1 f(b_1, b_2, b_3, b_4; x,y) &= \frac{1}{(1+e^{b_2-b_3x})^{1/b_4}}\\
D_2 f(b_1, b_2, b_3, b_4; x,y) &=
\frac{-b_1e^{b_2-b_3x}}{b_4(1+e^{b_2-b_3x})^{1/b_4 + 1}} \\
D_3 f(b_1, b_2, b_3, b_4; x,y) &=
\frac{b_1xe^{b_2-b_3x}}{b_4(1+e^{b_2-b_3x})^{1/b_4 + 1}} \\
D_4 f(b_1, b_2, b_3, b_4; x,y) & = \frac{b_1 \log\left(1+e^{b_2-b_3x}\right) }{b_4^2(1+e^{b_2-b_3x})^{1/b_4}}
\end{align}\end{split}
\]

数值求导,当对变量增加一个微小的增量,然后观察此时的残差和原先残差的下降比例即可,其实就是导数的定义。

\[Df(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}
\]

当然其实也有两种形式对导数进行数值上的近似,第一种是Forward Differences:

\[Df(x) \approx \frac{f(x + h) - f(x)}{h}
\]

第二种是 Central Differences:

\[Df(x) \approx \frac{f(x + h) - f(x - h)}{2h}
\]

Ceres 的官方文档上是认为第二种比第一种好的,但是其实官方还介绍了第三种,这里就不详说了,感兴趣的可以去看官方文档:Ridders’ Method。

这里有三种数值微分方法的效果对比,从右向左看:

效果依次是 \(Ridders > Central > Forwad\)

第三种则是今天要介绍的主角,自动求导。

3.0 Ceres 自动求导原理

3.1 官方解释

其实官方对自动求导做出了解释,但是笔者觉得写的不够直观,比较抽象,不过既然是官方出品,还是非常有必要去看一看的。http://ceres-solver.org/automatic_derivatives.html。

3.2 自我理解

\(\quad\)这里笔者根据网上和官方的资料整理了一下自己的理解。Ceres 自动求导的核心是运算符的重载与Ceres自有的 Jet 变量。

举一个例子:

函数 \(\mathrm{f}(\mathrm{x})=\mathrm{h}(\mathrm{x}) * \mathrm{~g}(\mathrm{x})\) , 他的目标函数值为 \(\mathrm{h}(\mathrm{x}) * \mathrm{~g}(\mathrm{x})\) , 导数为

\[\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{h}^{\prime}(\mathrm{x}) \mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})
\]

其中 \(h(x)\), \(g(x)\) 都是标量函数.

如果我们定义一种数据类型,

\[Data \{ double\ \ value, double\ \ derived \}
\]

并且对于数据类型 Data,重载乘法运算符

\[data1*data2=\begin{bmatrix}
data1.value*data2.value \\
data1.derived*data2.value+data1.value*data2.derived
\end{bmatrix}
\]

令 \(h(x) =[h(x),{h(x)}' ] , g(x)=[g(x),{g(x)' }]\)。\(f(x)=h(x) * g(x)\), 那么f_x.derived 就是\(f(x)\)的导数,f_x.value 即为\(f(x)\)的数值。value 储存变量的函数值, derived 储存变量对 \(\mathrm{x}\) 的导数。类似,如果我们对数据类型 Data 重载所有可能用到的运算符. “\(+- * / \log , \exp , \cdots\)” 。那么在变量 \(h(x),g(x)\)经过任意次运算后,\(result=h(x)+g(x)*h(x)+exp(h(x))…\), 任然能获得函数值 result.value 和他的导数值 result.derived,这就是Ceres 自动求导的原理。

上面讲的都是单一自变量的自动求导,对于多元函数\(f(x_i)\)。对于n 元函数,Data 里面的 double derived 就替换为 double* derived,derived[i] 为对于第i个自变量的导数值。

并且对于数据类型 Data,乘法运算符重载为

\[data1*data2=\begin{bmatrix}
data1.value*data2.value \\
derived[i]=data1.derived[i]*data2.value+data1.value*data2.derived[i]
\end{bmatrix}
\]

其余的运算符重载方法也做相应改变。这样对多元函数的自动求导问题也就解决了。Ceres 里面的Jet 数据类型类似于 这里Data 类型,并且Ceres 对Jet 数据类型进行了几乎所有数学运算符的重载,以达到自动求导的目的。

4.0 实践

4.1 Jet 的实现

这里我们模仿 Ceres 实现了 Jet ,并准备了两个具体的示例程序,Jet 具体代码在 ceres_jet.hpp 中,包装成了一个头文件,在使用的时候进行调用即可。这里也包含了一个 ceres_rotation.hpp 的头文件,是为了我们的第二个例子实现。具体代码如下:

ceres_jet.hpp

#ifndef _CERES_JET_HPP__
#define _CERES_JET_HPP__
#include <math.h>
#include <stdio.h> #include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense>
#include <eigen3/Eigen/Sparse>
#include "eigen3/Eigen/Eigen"
#include "eigen3/Eigen/SparseQR"
#include <fstream>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
#include "ceres_rotation.hpp" #include "algorithm"
#include "stdlib.h" template <int N>
struct jet
{
Eigen::Matrix<double, N, 1> v;
double a;
jet() : a(0.0) {}
jet(const double& value) : a(value) { v.setZero(); }
EIGEN_STRONG_INLINE jet(const double& value,
const Eigen::Matrix<double, N, 1>& v_)
: a(value), v(v_)
{
}
jet(const double value, const int index)
{
v.setZero();
a = value;
v(index, 0) = 1.0;
}
void init(const double value, const int index)
{
v.setZero();
a = value;
v(index, 0) = 1.0;
}
};
/****************jet overload******************/
// for the camera BA,the autodiff only need overload the operator :jet+jet
// number+jet -jet jet-number jet*jet number/jet jet/jet sqrt(jet) cos(jet)
// sin(jet) +=(jet) overload jet + jet
template <int N>
inline jet<N> operator+(const jet<N>& A, const jet<N>& B)
{
return jet<N>(A.a + B.a, A.v + B.v);
} // end jet+jet // overload number + jet
template <int N>
inline jet<N> operator+(double A, const jet<N>& B)
{
return jet<N>(A + B.a, B.v);
} // end number+jet template <int N>
inline jet<N> operator+(const jet<N>& B, double A)
{
return jet<N>(A + B.a, B.v);
} // end number+jet // overload jet-number
template <int N>
inline jet<N> operator-(const jet<N>& A, double B)
{
return jet<N>(A.a - B, A.v);
}
// overload number * jet because jet *jet need A.a *B.v+B.a*A.v.So the number
// *jet is required
template <int N>
inline jet<N> operator*(double A, const jet<N>& B)
{
return jet<N>(A * B.a, A * B.v);
}
template <int N>
inline jet<N> operator*(const jet<N>& A, double B)
{
return jet<N>(B * A.a, B * A.v);
}
// overload -jet
template <int N>
inline jet<N> operator-(const jet<N>& A)
{
return jet<N>(-A.a, -A.v);
}
template <int N>
inline jet<N> operator-(double A, const jet<N>& B)
{
return jet<N>(A - B.a, -B.v);
}
template <int N>
inline jet<N> operator-(const jet<N>& A, const jet<N>& B)
{
return jet<N>(A.a - B.a, A.v - B.v);
}
// overload jet*jet
template <int N>
inline jet<N> operator*(const jet<N>& A, const jet<N>& B)
{
return jet<N>(A.a * B.a, B.a * A.v + A.a * B.v);
}
// overload number/jet
template <int N>
inline jet<N> operator/(double A, const jet<N>& B)
{
return jet<N>(A / B.a, -A * B.v / (B.a * B.a));
}
// overload jet/jet
template <int N>
inline jet<N> operator/(const jet<N>& A, const jet<N>& B)
{
// This uses:
//
// a + u (a + u)(b - v) (a + u)(b - v)
// ----- = -------------- = --------------
// b + v (b + v)(b - v) b^2
//
// which holds because v*v = 0.
const double a_inverse = 1.0 / B.a;
const double abyb = A.a * a_inverse;
return jet<N>(abyb, (A.v - abyb * B.v) * a_inverse);
}
// sqrt(jet)
template <int N>
inline jet<N> sqrt(const jet<N>& A)
{
double t = std::sqrt(A.a); return jet<N>(t, 1.0 / (2.0 * t) * A.v);
}
// cos(jet)
template <int N>
inline jet<N> cos(const jet<N>& A)
{
return jet<N>(std::cos(A.a), -std::sin(A.a) * A.v);
}
template <int N>
inline jet<N> sin(const jet<N>& A)
{
return jet<N>(std::sin(A.a), std::cos(A.a) * A.v);
}
template <int N>
inline bool operator>(const jet<N>& f, const jet<N>& g)
{
return f.a > g.a;
} #endif //_CERES_JET_HPP__

ceres_rotation.hpp

#ifndef CERES_ROTATION_HPP_
#define CERES_ROTATION_HPP_
#include <iostream> template <typename T>
inline T DotProduct(const T x[3], const T y[3])
{
return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
} template <typename T>
inline void AngleAxisRotatePoint(const T angle_axis[3], const T pt[3],
T result[3])
{
const T theta2 = DotProduct(angle_axis, angle_axis);
if (theta2 > T(std::numeric_limits<double>::epsilon()))
{
// Away from zero, use the rodriguez formula
//
// result = pt costheta +
// (w x pt) * sintheta +
// w (w . pt) (1 - costheta)
//
// We want to be careful to only evaluate the square root if the
// norm of the angle_axis vector is greater than zero. Otherwise
// we get a division by zero.
//
const T theta = sqrt(theta2);
const T costheta = cos(theta);
const T sintheta = sin(theta);
const T theta_inverse = T(1.0) / theta; const T w[3] = {angle_axis[0] * theta_inverse,
angle_axis[1] * theta_inverse,
angle_axis[2] * theta_inverse}; // Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = {w[1] * pt[2] - w[2] * pt[1],
w[2] * pt[0] - w[0] * pt[2],
w[0] * pt[1] - w[1] * pt[0]};
const T tmp =
(w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta); result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
}
else
{
// Near zero, the first order Taylor approximation of the rotation
// matrix R corresponding to a vector w and angle w is
//
// R = I + hat(w) * sin(theta)
//
// But sintheta ~ theta and theta * w = angle_axis, which gives us
//
// R = I + hat(w)
//
// and actually performing multiplication with the point pt, gives us
// R * pt = pt + w x pt.
//
// Switching to the Taylor expansion near zero provides meaningful
// derivatives when evaluated using Jets.
//
// Explicitly inlined evaluation of the cross product for
// performance reasons.
const T w_cross_pt[3] = {angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
angle_axis[0] * pt[1] - angle_axis[1] * pt[0]}; result[0] = pt[0] + w_cross_pt[0];
result[1] = pt[1] + w_cross_pt[1];
result[2] = pt[2] + w_cross_pt[2];
}
} #endif // CERES_ROTATION_HPP_

4.2 多项式函数自动求导

这里我们准备了两个实践案例,一个是对下面的函数进行自动求导,求在 \(f(1,2)\) 处的导数。

\[f(x,y)=2x^2+3y^3+3
\]

代码如下:

#include <eigen3/Eigen/Core>
#include <eigen3/Eigen/Dense> #include "ceres_jet.hpp" int main(int argc, char const *argv[])
{
/// f(x,y) = 2*x^2 + 3*y^3 + 3
/// 残差的维度,变量1的维度,变量2的维度
const int N = 1, N1 = 1, N2 = 1;
Eigen::Matrix<double, N, N1> jacobian_parameter1;
Eigen::Matrix<double, N, N2> jacobian_parameter2;
Eigen::Matrix<double, N, 1> jacobi_residual; /// 模板参数为向量的维度,一定要是 N1+N2
/// 也就是总的变量的维度,因为要存储结果(残差)
/// 对于每个变量的导数值
/// 至于为什么有 N1 个 jet 表示 var_x
/// 假设变量 1 的维度为 N1,则残差对该变量的导数的维度是一个 N*N1 的矩阵
/// 一个 jet<N1 + N2> 只能表示变量中的某一个在当前点的导数和值
jet<N1 + N2> var_x[N1];
jet<N1 + N2> var_y[N2];
jet<N1 + N2> residual[N];
/// 假设我们求上面的方程在 (x,y)->(1.0,2.0) 处的导数值
double var_x_init_value[N1] = {1.0};
double var_y_init_value[N1] = {2.0}; for (int i = 0; i < N1; i++)
{
var_x[i].init(var_x_init_value[i], i);
}
for (int i = 0; i < N2; i++)
{
var_y[i].init(var_y_init_value[i], i + N1);
}
/// f(x,y) = 2*x^2 + 3*y^3 + 3
/// f_x` = 4x
/// f_y` = 9 * y^2
residual[0] = 2.0 * var_x[0] * var_x[0] + 3.0 * var_y[0] * var_y[0] * var_y[0] + 3.0;
std::cout << "residual: " << residual[0].a << std::endl;
std::cout << "jacobian: " << residual[0].v.transpose() << std::endl;
/// residual: 29
/// jacobian: 4 36
return 0;
}

输出结果,读者可以自己求导算一下,是正确的。

residual: 29
jacobian: 4 36

4.3 BA 问题中的自动求导

这里是用的 Bal 数据集中的某个观测构建的误差项求导

#include "ceres_jet.hpp"

class costfunction
{
public:
double x_;
double y_;
costfunction(double x, double y) : x_(x), y_(y) {}
template <class T>
void Evaluate(const T* camera, const T* point, T* residual)
{
T result[3];
AngleAxisRotatePoint(camera, point, result);
result[0] = result[0] + camera[3];
result[1] = result[1] + camera[4];
result[2] = result[2] + camera[5];
T xp = -result[0] / result[2];
T yp = -result[1] / result[2];
T r2 = xp * xp + yp * yp;
T distortion = 1.0 + r2 * (camera[7] + camera[8] * r2);
T predicted_x = camera[6] * distortion * xp;
T predicted_y = camera[6] * distortion * yp;
residual[0] = predicted_x - x_;
residual[1] = predicted_y - y_;
}
}; int main(int argc, char const* argv[])
{
const int N = 2, N1 = 9, N2 = 3;
Eigen::Matrix<double, N, N1> jacobi_parameter_1;
Eigen::Matrix<double, N, N2> jacobi_parameter_2;
Eigen::Matrix<double, N, 1> jacobi_residual;
costfunction* costfunction_ = new costfunction(-3.326500e+02, 2.620900e+02);
jet<N1 + N2> cameraJet[N1];
jet<N1 + N2> pointJet[N2];
double params_1[N1] = {
1.5741515942940262e-02, -1.2790936163850642e-02, -4.4008498081980789e-03,
-3.4093839577186584e-02, -1.0751387104921525e-01, 1.1202240291236032e+00,
3.9975152639358436e+02, -3.1770643852803579e-07, 5.8820490534594022e-13};
double params_2[N2] = {-0.612000157172, 0.571759047760, -1.847081276455};
for (int i = 0; i < N1; i++)
{
cameraJet[i].init(params_1[i], i);
}
for (int i = 0; i < N2; i++)
{
pointJet[i].init(params_2[i], i + N1);
}
jet<N1 + N2>* residual = new jet<N1 + N2>[N];
costfunction_->Evaluate(cameraJet, pointJet, residual);
for (int i = 0; i < N; i++)
{
jacobi_residual(i, 0) = residual[i].a;
}
for (int i = 0; i < N; i++)
{
jacobi_parameter_1.row(i) = residual[i].v.head(N1);
jacobi_parameter_2.row(i) = residual[i].v.tail(N2);
}
/*
real result:
jacobi_parameter_1:
-283.512 -1296.34 -320.603 551.177 0.000204691 -471.095 -0.854706 -409.362 -490.465
1242.05 220.93 -332.566 0.000204691 551.177 376.9 0.68381 327.511 392.397
jacobi_parameter_2:
545.118 -5.05828 -478.067
2.32675 557.047 368.163
jacobi_residual:
-9.02023
11.264
*/
std::cout << "jacobi_parameter_1: \n" << jacobi_parameter_1 << std::endl;
std::cout << "jacobi_parameter_2: \n" << jacobi_parameter_2 << std::endl;
std::cout << "jacobi_residual: \n" << jacobi_residual << std::endl;
delete (residual);
return 0;
}

输出结果

jacobi_parameter_1:
-283.512 -1296.34 -320.603 551.177 0.000204691 -471.095 -0.854706 -409.362 -490.465
1242.05 220.93 -332.566 0.000204691 551.177 376.9 0.68381 327.511 392.397
jacobi_parameter_2:
545.118 -5.05828 -478.067
2.32675 557.047 368.163
jacobi_residual:
-9.02023
11.264

Reference

http://ceres-solver.org/
https://blog.csdn.net/u012260559/article/details/105878468
https://www.ngui.cc/article/show-902862.html?action=onClick

Ceres 自动求导解析-从原理到实践的相关教程结束。

《Ceres 自动求导解析-从原理到实践.doc》

下载本文的Word格式文档,以方便收藏与打印。