AQS源码学习

2023-06-15,,

抽象队列同步器AQS

AQS介绍

AQS提供一套框架用于实现锁同步机制,其通过一个 FIFO队列 维护线程的同步状态,实现类只需要继承 AbstractQueuedSynchronizer ,并重写指定方法(tryAcquire()/tryRelease()等)即可实现线程同步机制。

AQS 继承结构

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable{
//...
}

AbstractOwnableSynchronizer

该类提供基础方法实现独占资源占有线程的关联

package java.util.concurrent.locks;

public abstract class AbstractOwnableSynchronizer implements java.io.Serializable {
private static final long serialVersionUID = 3737899427754241961L;
protected AbstractOwnableSynchronizer() { } // 占有线程
private transient Thread exclusiveOwnerThread; // 设置占有线程
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
} // 获取占有线程
protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}
}

AQS原理

AQS维护一个CLH (Craig, Landin, and Hagersten) 双向队列,记录头指针head(头指针无意义,没有对应线程) 和 尾指针tail,同时维护了一个 volatile int state 变量记录同步状态(初始状态默认为0,表示未被该资源未被占用)。

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements java.io.Serializable{
private static final long serialVersionUID = 7373984972572414691L; // 队列头节点
private transient volatile Node head; // 队列尾节点
private transient volatile Node tail; // 同步状态
private volatile int state; // CAS 原子更新状态
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
}

申请锁 -> lock() 执行过程

ReentrantLock 为例子,该锁默认实现是一个非公平独占锁

public static void main(String[] args) {
// 独占锁、默认非公平锁
ReentrantLock reentrantLock = new ReentrantLock();
reentrantLock.lock();
} // ReentrantLock.lock()
public void lock() {
sync.lock();
} // NofairSync.lock()
final void lock() {
// CAS 获取锁
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
// 获取锁失败
acquire(1);
} public final void acquire(int arg) {
// tryAcquire: 尝试获取锁
// acquireQueued: 添加到阻塞队列
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

tryAcquire 执行链: 尝试获取锁,获取不到则返回 false

// NofairSync.tryAcquire()
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
} // Sync.nofairTryAcquire()
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

acquireQueued 执行链:

    首先通过 addWaiter 方法将线程添加到队列尾部
    然后通过 acquireQueued 方法实现线程进入CLH队列后如何被阻塞或者被唤醒获取锁
// AbstractQueuedSynchronizer.addWaiter()
// 添加 node 到等待队列尾部
// 返回插入的节点 node
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
} // tail == null
enq(node);
return node;
} // 线程进入等待队列之后,如何获取锁或者继续阻塞
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor(); // 如果当前节点的前驱节点为 head,则竞争锁资源
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
} // 当前节点的前驱节点不是 head, 或者竞争锁失败
// shouldParkAfterFailedAcquire: true, 调用 parkAndCheckInterrupt() 阻塞线程
// shouldParkAfterFailedAcquire: false, 再次进入循环块,竞争锁
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
// for循环意外退出才能走到这
cancelAcquire(node);
}
} /**
* 判断当前线程是否需要阻塞
* 阻塞(return true):
* 1.前驱节点的状态 pred.waitStatus=SIGNAL
* 不阻塞(return false):
* 1.前驱节点的状态为 CANCELLED,循环向前找 ws <= 0 的前驱节点
* 2.前驱节点的状态 ws = 0 || ws = PROPAGATE
*/
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}

释放锁 -> unlock() 执行过程

同样以 ReentrantLock 为例子,该锁默认实现是一个非公平独占锁

public static void main(String[] args) {
// 独占锁、默认非公平锁
ReentrantLock reentrantLock = new ReentrantLock();
reentrantLock.lock(); try {
// 业务代码
} catch (Exception e) {
e.printStackTrace();
} finally {
reentrantLock.unlock();
}
} // ReentrantLock.unlock()
public void unlock() {
sync.release(1);
}

release 执行链:

    通过 tryRelease 方法判断当前锁是否已经被完全释放
    如果已经被完全释放 -> 则唤醒其后继节点对应的线程
// AbstractQueuedSynchronizer.release()
// tryRelease() 返回 true -> 则执行 if 中的逻辑 -> unparkSuccessor: 唤醒后继节点
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
} // 释放锁,修改 state
// free: true 锁已经完全释放,唤醒其他线程竞争
// free: false 锁仍然被当前线程占有
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

unparkSuccessor: 唤醒后继节点

情况1:直接唤醒当前节点的后继节点
情况2: 情况1对应的节点状态为 CANCELLED,则从CLH队列尾部开始寻找 ws <= 0 的节点唤醒

/**
* 唤醒后继节点
*
* waitStatus:
* CANCELLED(1) : 当前节点因超时或响应中断结束调度,进入该状态的节点不再变化
* SIGNAL(-1) : 后继节点等待当前节点唤醒
* CONDITION(-2) : 当前节点处于 condition 上,等待转移到CLH同步队列
* PROPAGETE(-3) : 当前节点处于 shared 状态
* 0 : 默认状态
*/
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0); // 情况1:直接唤醒当前节点的后继节点
// 情况2: 情况1对应的节点状态为 CANCELLED,则从CLH队列尾部开始寻找 ws <= 0 的节点唤醒
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}

FairSync && NofairSync

FairSync: 以 ReentrantLock 的公平锁实现为例

static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L; final void lock() {
acquire(1);
} protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 判断 CLH 队列是否有正在等待的线程,如果有,则唤醒CLH 队列 head 的后继节点
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}

NofairSync: 以 ReentrantLock 的非公平锁实现为例

static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L; /**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
// CAS 抢锁,如果恰巧没有线程占有,则直接获取锁返回
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
// 抢锁失败,则进入 acquire
acquire(1);
} protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
} final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 同样进行 CAS 抢锁,而不是判断 CLH 队列中是否有等待线程
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
} // 抢锁失败,则进入
return false;
}

所以,公平锁和非公平锁的区别总结如下:

    非公平锁调用 lock() 方法,会马上进行一次 CAS 抢占锁
    抢占锁失败后进入 tryAcquire() 方法,公平锁会去判断CLH等待队列是否有线程处于等待状态,如果有则不抢占锁;非公平锁则会直接进行 CAS 尝试抢占锁

[^]: 注:以上源代码阅读与分析,基于 Oracle JDK8 版本

AQS源码学习的相关教程结束。

《AQS源码学习.doc》

下载本文的Word格式文档,以方便收藏与打印。