机器学习--最邻近规则分类KNN算法

2023-07-29,,

理论学习:

3. 算法详述
 
     3.1 步骤:
     为了判断未知实例的类别,以所有已知类别的实例作为参照
     选择参数K
     计算未知实例与所有已知实例的距离
     选择最近K个已知实例
     根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别
 
     3.2 细节:
     关于K
     关于距离的衡量方法:
         3.2.1 Euclidean Distance(欧式距离) 定义

其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)

4. 算法优缺点:
     4.1 算法优点
          简单
          易于理解
          容易实现
          通过对K的选择可具备丢噪音数据的健壮性
          
     4.2 算法缺点

   需要大量空间储存所有已知实例
          算法复杂度高(需要比较所有已知实例与要分类的实例)
          当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本

5. 改进版本
      考虑距离,根据距离加上权重
      比如: 1/d (d: 距离)
 
应用:
1、用库来进行实现算法

 from sklearn import neighbors
from sklearn import datasets knn = neighbors.KNeighborsClassifier() iris = datasets.load_iris() print(iris) knn.fit(iris.data, iris.target) # 建模,两个参数:二维的特征值矩阵、一维的每一个实例所对应的对象 predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]]) print(predictedLabel)

2、不调用任何库来实现knn算法,其中使用到的数据集是sklearn自带的iris数据集

 # 不调用任何库来实现knn算法

 import csv
import random
import math
import operator # 将数据集装载到Python里面
# filename:数据集存放的文件
# split:以此参数为界限将数据集分为trainingSet训练集和testSet测试集
def loadDataset(filename, split, trainingSet=[], testSet=[]):
with open(filename, 'r') as csvfile: # 打开文件
lines = csv.reader(csvfile) # 读取文件的所有行
dataset = list(lines) # 文件内容转换成list结构 # 将数据集分为两部分
for x in range(len(dataset) - 1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
# 随机数小于split放入训练集,大于就放入测试集
if random.random() < split:
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) # 计算两个实例之间的欧式距离
# instance1、instance2是两个实例
# length是实例的维数
def euclideanDistance(instance1, instance2, length):
distance = 0 # 设置初始值为0 # 计算所有维度的差的平方和
for x in range(length):
distance += pow((instance1[x] - instance2[x]), 2)
return math.sqrt(distance) # 测试集中的一个实例到训练集的距离最近的k个实例
# trainingSet:训练集
# testInstance:测试集实例
# k:距离最近的个数
def getNeighbors(trainingSet, testInstance, k):
distances = []
length = len(testInstance) - 1
for x in range(len(trainingSet)):
dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1))
neighbors = []
for x in range(k):
neighbors.append(distances[x][0])
return neighbors def getResponse(neighbors):
"""
得到
:param neighbors:附近的实例
:return:得票最多的类别情况 """
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1]
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) # classVotes.iteritems()
return sortedVotes[0][0] def getAccuracy(testSet, predictions):
"""
得到预测的正确率
:param testSet:测试集
:param predictions: 预测结果
:return: 预测的正确率 """
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet))) * 100.0 def main():
""" :return:
"""
trainingSet = []
testSet = []
split = 0.67 # 把2/3的数据作为训练集,1/3为测试集
loadDataset(r'irisdata.txt', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet))) predictions = []
k = 3
for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x], k) # 找到各个测试集实例最近的邻居
result = getResponse(neighbors)
predictions.append(result)
print('> predicted=' + repr(result) + ',actual=' + repr(testSet[x][-1]))
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__':
main()

 
 

机器学习--最邻近规则分类KNN算法的相关教程结束。

《机器学习--最邻近规则分类KNN算法.doc》

下载本文的Word格式文档,以方便收藏与打印。