文档分类[女性,体育,文学,校园四类文本进行分类]

2022-07-28,,,,

微博文档分类

    • 文档输入对文档进行分词
    • 加载停等词表
    • 计算单词权重
    • 生成朴素贝叶斯分类器
    • 使用分类器预测
    • 计算准确率
    • 整体代码
    • 朴素贝叶斯
    • TF-IDF

文档输入对文档进行分词

 目标:对女性,体育,文学,校园这四类文本进行分类
 在准备阶段里,最重要的就是分词。英文文档和中文文档所使用的分词工具不同。在英文文档中,最常用的是 NTLK 包。NTLK 包中包含了英文的停用词 stop words、分词和标注方法。

import nltk
word_list = nltk.word_tokenize(text) #分词
nltk.pos_tag(word_list) #标注单词的词性

 在中文文档中,最常用的是 jieba 包。jieba 包中包含了中文的停用词 stop words 和分词方法。

import jieba
word_list = jieba.cut (text) #中文分词

加载停等词表

 我们需要自己读取停用词表文件,从网上可以找到中文常用的停用词保存在 stop_words.txt,然后利用 Python 的文件读取函数读取文件,保存在 stop_words 数组中。

stop_words = [line.strip().decode('utf-8') for line in io.open('stop_words.txt').readlines()]

计算单词权重

 使用 sklearn 里的 TfidfVectorizer 类。直接创建 TfidfVectorizer 类,然后使用 fit_transform 方法进行拟合,得到 TF-IDF 特征空间 features,可以理解为选出来的分词就是特征。计算这些特征在文档上的特征向量,得到特征空间 features。

tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5)
features = tf.fit_transform(train_contents)

 这里 max_df 参数用来描述单词在文档中的最高出现率。假设max_df=0.5,代表一个单词在 50% 的文档中都出现过了,那么它只携带了非常少的信息,因此就不作为分词统计。一般很少设置 min_df,因为 min_df 通常都会很小。

生成朴素贝叶斯分类器

 将特征训练集的特征空间 train_features,以及训练集对应的train_labels 传递给贝叶斯分类器 clf,它会自动生成一个符合特征空间和对应分类的分类器。
 采用的是多项式贝叶斯分类器,其中 alpha 为平滑参数。为什么要使用平滑呢?因为如果一个单词在训练样本中没有出现,这个单词的概率就会被计算为 0。但训练集样本只是整体的抽样情况,我们不能因为一个事件没有观察到,就认为整个事件的概率为 0。为了解决这个问题,我们需要做平滑处理。当 alpha=1 时,使用的是 Laplace平滑。Laplace平滑就是采用加 1 的方式,来统计没有出现过的单词的概率。这样当训练样本很大的时候,加1得到的概率变化可以忽略不计,也同时避免了零概率的问题。当 0<alpha<1 时,使用的是 Lidstone 平滑。对于 Lidstone 平滑来说,alpha 越小,迭代次数越多,精度越高。我们可以设置 alpha 为 0.001。

# 多项式贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB  
clf = MultinomialNB(alpha=0.001).fit(train_features, train_labels)

使用分类器预测

 首先我们需要得到测试集的特征矩阵。方法是用训练集的分词创建一个 TfidfVectorizer 类,使用同样的 stop_words 和 max_df,然后用这个 TfidfVectorizer 类对测试集的内容进行 fit_transform 拟合,得到测试集的特征矩阵 test_features。

test_tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5, vocabulary=train_vocabulary)
test_features=test_tf.fit_transform(test_contents)

 然后我们用训练好的分类器对新数据做预测。方法是使用 predict 函数,传入测试集的特征矩阵 test_features,得到分类结果 predicted_labels。predict 函数做的工作就是求解所有后验概率并找出最大的那个。

predicted_labels=clf.predict(test_features)

计算准确率

 计算准确率实际上是对分类模型的评估。我们可以调用 sklearn 中的 metrics 包,在 metrics 中提供了 accuracy_score 函数,方便我们对实际结果和预测的结果做对比,给出模型的准确率。

from sklearn import metrics
print metrics.accuracy_score(test_labels, predicted_labels)

整体代码

# 中文文本分类
import os
import jieba
import warnings
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn import metrics

warnings.filterwarnings('ignore')

def cut_words(file_path):
    """
    对文本进行切词
    :param file_path: txt文本路径
    :return: 用空格分词的字符串
    """
    text_with_spaces = ''
    text=open(file_path, 'r', encoding='gb18030').read()
    textcut = jieba.cut(text)
    for word in textcut:
        text_with_spaces += word + ' '
    return text_with_spaces

def loadfile(file_dir, label):
    """
    将路径下的所有文件加载
    :param file_dir: 保存txt文件目录
    :param label: 文档标签
    :return: 分词后的文档列表和标签
    """
    file_list = os.listdir(file_dir)
    words_list = []
    labels_list = []
    for file in file_list:
        file_path = file_dir + '/' + file
        words_list.append(cut_words(file_path))
        labels_list.append(label)                                                                                                                 
    return words_list, labels_list

# 训练数据
train_words_list1, train_labels1 = loadfile('text classification/train/女性', '女性')
train_words_list2, train_labels2 = loadfile('text classification/train/体育', '体育')
train_words_list3, train_labels3 = loadfile('text classification/train/文学', '文学')
train_words_list4, train_labels4 = loadfile('text classification/train/校园', '校园')

train_words_list = train_words_list1 + train_words_list2 + train_words_list3 + train_words_list4
train_labels = train_labels1 + train_labels2 + train_labels3 + train_labels4

# 测试数据
test_words_list1, test_labels1 = loadfile('text classification/test/女性', '女性')
test_words_list2, test_labels2 = loadfile('text classification/test/体育', '体育')
test_words_list3, test_labels3 = loadfile('text classification/test/文学', '文学')
test_words_list4, test_labels4 = loadfile('text classification/test/校园', '校园')

test_words_list = test_words_list1 + test_words_list2 + test_words_list3 + test_words_list4
test_labels = test_labels1 + test_labels2 + test_labels3 + test_labels4

stop_words = open('text classification/stop/stopword.txt', 'r', encoding='utf-8').read()
stop_words = stop_words.encode('utf-8').decode('utf-8-sig') # 列表头部\ufeff处理
stop_words = stop_words.split('\n') # 根据分隔符分隔

# 计算单词权重
tf = TfidfVectorizer(stop_words=stop_words, max_df=0.5)

train_features = tf.fit_transform(train_words_list)
# 上面fit过了,这里transform
test_features = tf.transform(test_words_list) 

# 多项式贝叶斯分类器
from sklearn.naive_bayes import MultinomialNB  
clf = MultinomialNB(alpha=0.001).fit(train_features, train_labels)
predicted_labels=clf.predict(test_features)

# 计算准确率
print('准确率为:', metrics.accuracy_score(test_labels, predicted_labels))
准确率为0.91

朴素贝叶斯

  • 高斯朴素贝叶斯:特征变量是连续变量,符合高斯分布,比如说人的身高,物体的长度。
  • 多项式朴素贝叶斯:特征变量是离散变量,符合多项分布,在文档分类中特征变量体现在一个单词出现的次数,或者是单词的 TF-IDF 值等。
  • 伯努利朴素贝叶斯:特征变量是布尔变量,符合 0/1 分布,在文档分类中特征是单词是否出现。
     伯努利朴素贝叶斯是以文件为粒度,如果该单词在某文件中出现了即为 1,否则为 0。而多项式朴素贝叶斯是以单词为粒度,会计算在某个文件中的具体次数。而高斯朴素贝叶斯适合处理特征变量是连续变量,且符合正态分布(高斯分布)的情况。比如身高、体重这种自然界的现象就比较适合用高斯朴素贝叶斯来处理。而文本分类是使用多项式朴素贝叶斯或者伯努利朴素贝叶斯。

TF-IDF

 TF-IDF 实际上是两个词组 Term Frequency 和 Inverse Document Frequency 的总称,两者缩写为 TF 和 IDF,分别代表了词频逆向文档频率
词频 TF 计算了一个单词在文档中出现的次数,它认为一个单词的重要性和它在文档中出现的次数呈正比
逆向文档频率 IDF,是指一个单词在文档中的区分度。它认为一个单词出现在的文档数越少,就越能通过这个单词把该文档和其他文档区分开。IDF 越大就代表该单词的区分度越大。
所以 TF-IDF 实际上是词频 TF 和逆向文档频率 IDF 的乘积。这样我们倾向于找到 TF 和 IDF 取值都高的单词作为区分,即这个单词在一个文档中出现的次数多,同时又很少出现在其他文档中。这样的单词适合用于分类。
TF-IDF如何计算:
词频TF=(单词出现的次数)/(该文档的总单词数)
逆向文档频率IDF = log[(文档总数)/(该单词出现的文档数+1)]
TF-IDF=TF*IDF

本文地址:https://blog.csdn.net/qq_22017379/article/details/109623738

《文档分类[女性,体育,文学,校园四类文本进行分类].doc》

下载本文的Word格式文档,以方便收藏与打印。