ABC267G Increasing K Times 题解

2023-07-29,,

做这道题,很有感悟,发篇文。

先给数列从小到大排个序。

接下来设 \(f_{i,j}\) 表示前 \(i\) 个数的排列形成 \(j\) 个上坡的方案数。

接下来考虑转移,分为插入第 \(i\) 个数后增加上坡和不增加上坡两种情况。

对于不增加的情况,有三种可能:

第 \(i\) 个数插入在了数列的最前端,有 \(1\) 种方案。
第 \(i\) 个数插入在了一个上坡的中间,因为上坡中较小的那个数字必定小于第 \(i\) 个数,形成一个上坡,较大的那个数字必定小于等于第 \(i\) 个数,不形成上坡,而我们拆散了一个上坡,故没有增加,有 \(j\) 种方案。
第 \(i\) 个数插入在了数值相同的数后面,这个记为 \(same_i\),有 \(same_i\) 种方案。

对于增加的情况,就是减去这三种情况了,不过增加了,就说明原来只有 \(j-1\) 个上坡,这里和上面不太一样。

整理式子,得:

\[f_{i,j} = f_{i-1,j-1} \times (i - j - same_i) + f_{i-1,j} \times (1 + j + same_i)
\]

这样就可以 \(O(n^2)\) 求得了,可以用滚动数组。

#include <bits/stdc++.h>
using namespace std;
long long n, k, a[5005], f[5005], same[5005], sum;
int main() {
cin >> n >> k;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
sort(a + 1, a + n + 1);
for (int i = 1; i <= n; i++) {
if (a[i] == a[i - 1])
same[i] = same[i - 1] + 1;
}
f[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = i - same[i]; j >= 1; j--) {
f[j] = f[j - 1] * (i - j - same[i]) % 998244353 + f[j] * (1 + j + same[i]) % 998244353;
f[j] %= 998244353;
}
f[0] = f[0] * (1 + same[i]) % 998244353;
}
cout << f[k] << endl;
}

After Increasing K Times

过了一段时间重新看了一下这道题,发现有几个优化,也顺便介绍一下。

首先,我们发现 \(n\) 很大,但是数值区间很小,所以考虑使用桶排序,因为数字在 \([1,n]\),所以排序复杂度为 \(O(n)\)。

然后,我们发现枚举区间可以缩小,因为我们并不是全都需要,简单用一个图表示:

左边是我们需要的值,右边是不需要的。

那么,有用的状态的区间边界很好推算,是 \([k+n-i+1,k]\),这个优化可以减少接近一半的时间。

以上优化让代码大大提速,获得了洛谷最优解,在 AtCoder 排名第二(截至2022.11.23)。

第一名本人丧心病狂卡常也卡不过,快了 4ms,但是本代码很短,最快代码使用了 IDFT。

#include <stdio.h>
inline int read() {
char c = getchar();
int sum = 0;
while (c < '0' || c > '9') c = getchar();
do {
sum = (sum << 3) + (sum << 1) + c - '0';
c = getchar();
} while (c >= '0' && c <= '9');
return sum ;
}
int n, k,s[5005],b[5005],t=1;
long long f[5005];
int main() {
n=read(),k=read();
for (int i = 1; i <= n; i++)b[read()]++;
for(int i=1;i<=n&&t<=n;i++)
{
if(b[i])b[i]--,t++;
while(b[i])b[i]--,s[t] = s[t - 1] + 1,t++;
}
f[0] = 1;
for (int i = 1; i <= n; i++) {
int r=(k>i-s[i])?(i-s[i]):k,l=(k-n+i-1>1)?(k-n+i-1):1;
for (int j = r; j >= l; j--) {
f[j] = f[j] * (j + s[i] + 1) + f[j - 1] * (i - j - s[i]) ;
f[j] %= 998244353;
}
f[0] = f[0] * (s[i] + 1) % 998244353;
}
printf("%lld\n",f[k]);
return 0;
}

ABC267G Increasing K Times 题解的相关教程结束。

《ABC267G Increasing K Times 题解.doc》

下载本文的Word格式文档,以方便收藏与打印。