Java内存模型与指令重排

2023-07-29,,

本文暂不讲JMM(Java Memory Model)中的主存, 工作内存以及数据如何在其中流转等等,

这些本身还牵扯到硬件内存架构, 直接上手容易绕晕, 先从以下几个点探索JMM

原子性
有序性
可见性
指令重排
CPU指令重排
编译器优化重排
Happen-Before规则

原子性

原子性是指一个操作是不可中断的. 即使是在多个线程一起执行的时候,

一个操作一旦开始,就不会被其它线程干扰. 例如CPU中的一些指令, 属于原子性的,

又或者变量直接赋值操作(i = 1), 也是原子性的, 即使有多个线程对i赋值, 相互也不会干扰.

而如i++, 则不是原子性的, 因为他实际上i = i + 1, 若存在多个线程操作i, 结果将不可预期.

有序性

有序性是指在单线程环境中, 程序是按序依次执行的.

而在多线程环境中, 程序的执行可能因为指令重排而出现乱序, 下文会有详细讲述.

     class OrderExample {
int a = 0;
boolean flag = false; public void writer() {
// 以下两句执行顺序可能会在指令重排等场景下发生变化
a = 1;
flag = true;
} public void reader() {
if (flag) {
int i = a + 1;
……
}
}
}

可见性

可见性是指当一个线程修改了某一个共享变量的值,其他线程是否能够立即知道这个修改.

会有多种场景影响到可见性:

CPU指令重排

多条汇编指令执行时, 考虑性能因素, 会导致执行乱序, 下文会有详细讲述.

硬件优化(如写吸收,批操作)

cpu2修改了变量T, 而cpu1却从高速缓存cache中读取了之前T的副本, 导致数据不一致.

编译器优化

主要是Java虚拟机层面的可见性, 下文会有详细讲述.

指令重排

指令重排是指在程序执行过程中, 为了性能考虑, 编译器和CPU可能会对指令重新排序.

CPU指令重排

一条汇编指令的执行是可以分为很多步骤的, 分为不同的硬件执行

取指 IF
译码和取寄存器操作数 ID
执行或者有效地址计算 EX (ALU逻辑计算单元)
存储器访问 MEM
写回 WB (寄存器)

既然指令可以被分解为很多步骤, 那么多条指令就不一定依次序执行.

因为每次只执行一条指令, 依次执行效率太低了, 假设上述每一个步骤都要消耗一个时钟周期,

那么依次执行的话, 一条指令要5个时钟周期, 两条指令要占用10个时钟周期, 三条指令消耗15个时钟.

而如果硬件空闲即可执行下一步, 类似于工厂中的流水线, 一条指令要5个时钟周期,

两条指令只需要6个时钟周期, 因为是错位流水执行, 三条指令消耗7个时钟.

举个例子 A = B + C, 需要如下指令

指令1 : 加载B到寄存器R1中
指令2 : 加载C到寄存器R2中
指令3 : 将R1与R2相加, 得到R3
指令4 : 将R3赋值给A

注意下图红色框选部分, 指令1, 2独立执行, 互不干扰.

指令3依赖于指令1, 2加载结果, 因此红色框选部分表示在等待指令1, 2结束.

待指令1, 2都已经走完MEM部分, 数据加载到内存后, 指令3继续执行计算EX.

同理指令4需要等指令3计算完, 才可以拿到R3, 因此也需要错位等待.

再来看一个复杂的例子

a = b + c

d = e - f

具体指令执行步骤如图, 不再赘述, 与上图类似, 在执行过程中同样会出现等待.

这边框选的X统称一个气泡, 有没有什么方案可以削减这类气泡呢.

答案自然是可以的, 我们可以在出现气泡之前, 执行其他不相干指令来减少气泡.

例如可以将第五步的加载e到寄存器提前执行, 消除第一个气泡,

同理将第六步的加载f到寄存器提前执行, 消除第二个气泡.

经过指令重排后, 整个流水线会更加顺畅, 无气泡阻塞执行.

原先需要14个时钟周期的指令, 重排后, 只需要12个时钟周期即可执行完毕.

指令重排只可能发生在毫无关系的指令之间, 如果指令之间存在依赖关系, 则不会重排.

如 指令1 : a = 1 指令2: b = a - 1, 则指令1, 2 不会发生重排.

编译器优化

主要指jvm层面的, 如下代码, 在jvm client模式很快就跳出了while循环, 而在server模式下运行, 永远不会停止.

 /**
* Created by Administrator on 2018/5/3/0003.
*/
public class VisibilityTest extends Thread {
private boolean stop; public void run() {
int i = 0;
while (!stop) {
i++;
}
System.out.println("finish loop,i=" + i);
} public void stopIt() {
stop = true;
} public boolean getStop() {
return stop;
} public static void main(String[] args) throws Exception {
VisibilityTest v = new VisibilityTest();
v.start();
Thread.sleep(1000);
v.stopIt();
Thread.sleep(2000);
System.out.println("finish main");
System.out.println(v.getStop());
}
}

以32位jdk1.7.0_55为例, 我们可以通过修改JAVA_HOME/jre/lib/i386/jvm.cfg, 将jvm调整为server模式验证下.

修改内容如下图所示, 将-server调整到-client的上面.

-server KNOWN
-client KNOWN
-hotspot ALIASED_TO -client
-classic WARN
-native ERROR
-green ERROR

修改成功后, java -version会产生如图变化.

两者区别在于当jvm运行在-client模式的时候,使用的是一个代号为C1的轻量级编译器,

而-server模式启动的虚拟机采用相对重量级,代号为C2的编译器. C2比C1编译器编译的相对彻底,

会导致程序启动慢, 但服务起来之后, 性能更高, 同时有可能带来可见性问题.

我们将上述代码运行的汇编代码打印出来, 打印方法也简单提一下.

给主类运行时加上VM Options, -XX:+UnlockDiagnosticVMOptions -XX:+PrintAssembly

此时会提示Could not load hsdis-i386.dll; library not loadable; PrintAssembly is disabled

因为打印汇编需要给jdk安装一个插件, 可能需要自己编译hsdis, 不同平台不太一样,

Windows下32位jdk需要的是hsdis-i386.dll, 64位jdk需要hsdis-amd64.dll.

我们把编译好的hsdis-i386.dll放到JAVA_HOME/jre/bin/server以及JAVA_HOME/jre/bin/client目录中.

运行代码, 控制台会把代码对应的汇编指令一起打印出来. 会有很多行, 我们只需要搜索run方法对应的汇编.

搜索 'run' '()V' in 'VisibilityTest', 可以找到对应的指令.

如下代码所示, 从红字注释的部分可以看出来,

只有第一次进入循环之前, 检查了下stop的值, 不满足条件进入循环后,

再也没有检查stop, 一直在做循环i++.

      public void run() {
int i = 0;
while (!stop) {
i++;
}
System.out.println("finish loop,i=" + i);
} # {method} 'run' '()V' in 'VisibilityTest'
......
0x02d486e9: jne 0x02d48715
// 获取stop的值
0x02d486eb: movzbl 0x64(%ebp),%ecx ; implicit exception: dispatches to 0x02d48703
0x02d486ef: test %ecx,%ecx
// 进入while之前, 若stop满足条件, 则跳转到0x02d48703, 不执行while循环
0x02d486f1: jne 0x02d48703 ;*goto
; - VisibilityTest::run@12 (line 10)
// 循环体内, i++
0x02d486f3: inc %edi ; OopMap{ebp=Oop off=52}
;*goto
; - VisibilityTest::run@12 (line 10)
0x02d486f4: test %edi,0xe00000 ;*goto
; - VisibilityTest::run@12 (line 10)
; {poll}
// jmp, 无条件跳转到0x02d486f3, 一直执行i++操作, 根本不检查stop的值
// 导致死循环
0x02d486fa: jmp 0x02d486f3
0x02d486fc: mov $0x0,%ebp
0x02d48701: jmp 0x02d486eb
// 跳出循环
0x02d48703: mov $0xffffff86,%ecx
......

解决方案也很简单, 只要给stop加上volatile关键字, 再次打印汇编代码, 发现他每次都会检查stop的值.

就不会出现无限循环了.

     // 给stop加上volatile后
public void run() {
int i = 0;
while (!stop) {
i++;
}
System.out.println("finish loop,i=" + i);
} # {method} 'run' '()V' in 'VisibilityTest'
......
0x02b4895c: mov 0x4(%ebp),%ecx ; implicit exception: dispatches to 0x02b4899d
0x02b4895f: cmp $0x5dd5238,%ecx ; {oop('VisibilityTest')}
// 进入while判断
0x02b48965: jne 0x02b4898d ;*aload_0
; - VisibilityTest::run@2 (line 9)
// 跳转到0x02b48977获取stop
0x02b48967: jmp 0x02b48977
0x02b48969: nopl 0x0(%eax)
   // 循环体内, i++
0x02b48970: inc %ebx ; OopMap{ebp=Oop off=49}
;*goto
; - VisibilityTest::run@12 (line 10)
0x02b48971: test %edi,0xb30000 ;*aload_0
; - VisibilityTest::run@2 (line 9)
; {poll}
// 循环过程中获取stop的值
0x02b48977: movzbl 0x64(%ebp),%eax ;*getfield stop
; - VisibilityTest::run@3 (line 9)
// 验证stop的值
0x02b4897b: test %eax,%eax
// 若stop不符合条件, 则继续跳转到0x02b48970: inc, 执行i++, 否则中断循环
0x02b4897d: je 0x02b48970 ;*ifne
; - VisibilityTest::run@6 (line 9)
0x02b4897f: mov $0x33,%ecx
0x02b48984: mov %ebx,%ebp
0x02b48986: nop
// 跳出循环, 执行System.out.print打印
0x02b48987: call 0x02b2cac0 ; OopMap{off=76}
;*getstatic out
; - VisibilityTest::run@15 (line 12)
; {runtime_call}
0x02b4898c: int3
0x02b4898d: mov $0xffffff9d,%ecx
......

再来看两个从Java语言规范中摘取的例子, 也是涉及到编译器优化重排, 这里不再做详细解释, 只说下结果.

例子1中有可能出现r2 = 2 并且 r1 = 1;

例子2中是r2, r5值因为都是=r1.x, 编译器会使用向前替换, 把r5指向到r2, 最终可能导致r2=r5=0, r4 = 3;

Happen-Before先行发生规则

如果光靠sychronized和volatile来保证程序执行过程中的原子性, 有序性, 可见性, 那么代码将会变得异常繁琐.

JMM提供了Happen-Before规则来约束数据之间是否存在竞争, 线程环境是否安全, 具体如下:

顺序原则

一个线程内保证语义的串行性; a = 1; b = a + 1;

volatile规则

volatile变量的写,先发生于读,这保证了volatile变量的可见性,

锁规则

解锁(unlock)必然发生在随后的加锁(lock)前.

传递性

A先于B,B先于C,那么A必然先于C.

线程启动, 中断, 终止

线程的start()方法先于它的每一个动作.

线程的中断(interrupt())先于被中断线程的代码.

线程的所有操作先于线程的终结(Thread.join()).

对象终结

对象的构造函数执行结束先于finalize()方法.

Java内存模型与指令重排的相关教程结束。

《Java内存模型与指令重排.doc》

下载本文的Word格式文档,以方便收藏与打印。